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ABSTRACT

DNA-binding proteins (DNA-BPs) play a pivotal role in
various intra- and extra-cellular activities ranging

10 from DNA replication to gene expression control.
Attempts have been made to identify DNA-BPs
based on their sequence and structural information
with moderate accuracy. Here we develop a machine
learning protocol for the prediction of DNA-BPs where

15 the classifier is Support Vector Machines (SVMs).
Information used for classification is derived from
characteristics that include surface and overall
composition, overall charge and positive potential
patches on the protein surface. In total 121 DNA-

20 BPs and 238 non-binding proteins are used to build
and evaluate the protocol. In self-consistency, accur-
acy value of 100% has been achieved. For cross-
validation (CV) optimization over entire dataset, we
report an accuracy of 90%. Using leave 1-pair holdout

25 evaluation, the accuracy of 86.3% has been achieved.
When we restrict the dataset to less than 20%
sequence identity amongst the proteins, the holdout
accuracy is achieved at 85.8%. Furthermore, seven
DNA-BPs with unbounded structures are all correctly

30 predicted. The current performances are better than
results published previously. The higher accuracy
value achieved here originates from two factors:
the ability of the SVM to handle features that demon-
strate a wide range of discriminatory power and,

35 a different definition of the positive patch. Since
our protocol does not lean on sequence or structural
homology, it can be used to identify or predict pro-
teins with DNA-binding function(s) regardless of
their homology to the known ones.

40INTRODUCTION

The number of genes encoding for DNA-binding proteins
(DNA-BPs) in the human genome has been pegged at 6–7%
by comparative sequence analysis (1). These proteins play key
roles in molecular biology, such as recognizing specific nuc-

45leotide sequences, regulation of transcription, maintenance of
cellular DNA, DNA repair, DNA packaging and recombina-
tion and control of replication (1). Protein–DNA interactions
also play other crucial roles in the cell. In eukaryotic cells
chromosomal DNA is packaged into a compact structure with

50the help of histones. Restriction enzymes are DNA-cutting
enzymes found in bacteria that recognize and cut DNA only
at a particular sequence of nucleotides to serve a host-defense
role. Being at the core of such momentous processes, protein–
DNA interactions have received a commensurate interest

55(2–5). There have been studies to detect (6,7), design (8) and
predict them using a probabilistic recognition code (9). There
have also been works towards analyzing protein–DNA recog-
nition mechanism (10) and binding site discovery (11).

DNA-BPs represent a broad category of proteins, known to
60be highly diverse in sequence and structure. Structurally, they

have been divided into 54 protein-structural families (1). With
such a high degree of variance, using conventional annotation
methods rooted in database searching for sequence similarity
(12), profile or motif similarity (13) and phylogenetic profiles

65(14) may not lead to reliable annotations. In this context,
a DNA-BP prediction protocol that takes into account the
structural information and does not depend on sequential or
structural homology to proteins with known functions will be
very useful.

70Previously, there have been a few bioinformatics methods
developed towards automated identification and prediction of
DNA-BPs. Cai and Lin (15) used pseudo-amino acid composi-
tion to identify proteins that bind to RNA, rRNA and DNA.
Ahmad et al. (16) integrated structural information with a

75neural network approach for the prediction of DNA-BPs.
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Stawiski et al. and Jones et al. (17,18) characterized electro-
static features of proteins for an automated approach to DNA-
BP and DNA-binding site prediction. Ahamd and Sarai (19)
showed that overall charge and electric moment can be used to

5 identify DNA-BPs. Tsuchiya et al. (20) combined structural
features with electrostatic properties of the proteins. Accuracy
rates achieved in these methods varied from 65% to 86%
depending on both the features used and the validation method
adopted.

10 In this work, we build a support vector machine (SVM)-
based classification model to distinguish DNA-BPs from non-
binding ones with high accuracy and investigate different
features (21). Application of SVM in bioinformatics to various
topics has been explored (22–24). Implementations of SVM

15 to protein fold recognition, including our own, has achieved
superior performance over neural-networks (25,26).

The goal of the current work is 2-fold: the implementation
of a robust protocol using SVM for DNA-BPs prediction
and the development of meaningful descriptors. We charac-

20 terize the structural and sequential features of DNA-BPs and
use them to develop the protocol. The validation showed the
current protocol outperformed other published data. The res-
ults indicate the plausibility of an application of kernel-based
machine learning methods to identify and predict DNA-BPs.

25 The approach will be refined as more knowledge becomes
available about the determinants of protein–DNA binding
so that more features will be included.

Organization of the paper is as follows. First, in Materials
and Methods, we describe the features that are used, the imple-

30 mentation of SVM and the evaluation method adopted. In
Results, we present the discriminative power of individual
features and their combined performance using SVM. In
Discussion, we interpret the origin of our improved perform-
ance and suggest possible future research directions.

35 MATERIALS AND METHODS

Dataset

A positive dataset of 121 DNA-BPs was obtained from a union
of datasets used in previous related studies (16,17,27). The
complexes in the dataset were better than 3 s in resolution.

40 A negative dataset of 238 non-DNA-BPs with resolution better
than 3 s was also adopted from an earlier study (17). These
proteins have <35% sequence identity between each pairs. The
121 DNA-BPs are further reduced to 83 proteins to ensure
that there is no >20% sequence identity between any pairs.

45 A complete list of all the cases can be downloaded from our
webpage (http://proteomics.bioengr.uic.edu/pro-dna).

Problem formulation

In simple words, the binary classification problem being stud-
ied here can be stated as: can we predict if a given protein

50 belongs to DNA-binding or non-DNA-binding class? When
translated into machine-learning lexicon, sequence and struc-
ture form the ‘state space’ of the problem. Some characterist-
ics of the state space, called the descriptors, which are believed
to be important for classification, are formulated into a fixed

55 length feature vector by ‘feature generation’. Also, every
member in the dataset is associated with one of the two
‘class labels’: DNA-binding or non-DNA-binding.

After the formulation of the feature vectors for every mem-
ber, they are input into the classifier. There are two parts to

60classification: training and testing. During training, the class of
every input vector is known in advance. The classifier then
adopts its own method of building a classification model that
minimizes the empirical error. During testing, when the class
of the input vector is not known beforehand, the classifier then

65uses the classification model built during training to predict the
class of each member and outputs it. To achieve high accuracy
in classification, thus, the choice of good descriptors that can
distinguish the two classes is very important.

Feature design

70The features explored in this study include positive potential
surface patches, overall charge of the protein and overall/
surface composition. Each class of features is described
below.

Overall charge. Overall charge of a protein comprises a single
75attribute subset in the SVM feature vector. Hydrogen atoms

were added to all the proteins using a publicly available
tool REDUCE (28). Then charges were assigned to all the
atoms employing the CHARMM force field parameters (29).
Histidine residues were assigned a neutral charge.

80Electrostatic calculations and patch formation. The program
Delphi was used for all electrostatic calculations in this study
(30–32). It solves the non-linear Poisson–Boltzmann equation
using finite-difference methods to calculate the potential at
specified points. Potential on the coordinate of every atom

85of the protein was calculated in the absence of the DNA
and reported. The CHARMM force-field was used for assign-
ment of partial charges to all the atoms of the protein and
Debye–Huckel boundary conditions were employed. Probe
radii of 1.4 s and a stern (ion-exclusion) layer of 2 s were

90specified. Salt concentration and temperature were fixed at
145 mM and 298 K, respectively. The dielectric constants
used were 2.0 and 80.0 for protein interior and the solvent.
A fine-resolution grid structure with a scale (grids/Å) of 2 was
employed. The percentage fill specified was 50%, meaning

95that protein fills half of the total volume of the grid cubic.
The center of the grid architecture was translated to the geo-
metric center of the protein.

The positive surface patches are identified with an iterative
growing algorithm. Surface residues are defined as the ones

100that have more than 40% of their area exposed to water as
calculated by DSSP (33). A surface atom with potential higher
than 200 kT/e was used as the starting point for the patch
and all surface atoms having a positive potential and falling
within a distance of 2 s were added to the patch. Each of

105these atoms was then used as the center for further expansion
of the patch. When the process converges, an atom with pos-
itive potential higher than 200 kT/e that doesn’t belong to this
patch starts a new patch formation. The size of a patch was
defined by the number of atoms it contained. Usually there is

110more then one patch formed on each protein. These patches are
sorted by the size. The size of the largest patch was used as a
feature in SVM. We also used the aggregate size of the largest
four patches as features but using the size of the largest patch
gave the best performance.
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Amino acid composition. We computed two compositions
(% of the 20 amino acids) for a protein: overall and surface.
For overall composition, all residues were used. For surface
composition only calculation residues having more than 40%

5 of their surface area accessible to solvent were used. Each kind
of composition is a 20-dimensional input feature sub-vector
so that amino acid composition becomes a 40-dimenstional
sub-vector.

Prediction protocol

10 Classifier. We use SVM for this classification problem. SVM
is a binary classification tool that uses a non-linear transfor-
mation to map the input data to a high dimensional feature
space where linear classification is performed. It is equivalent
to solving the quadratic optimization problem:

min
w‚ b‚xi

1

2
w ·w þ C

X

i

xi 1
16

s:t: yiðfðxiÞ ·w þ bÞ>1�xi‚ i ¼ 1‚ . . . ‚m‚

xi>0‚ i ¼ 1‚ . . . ‚m‚
2

where xi is a feature vector labeled by yi e{+1,�1}, (xi,yj),
i ¼ 1,. . .,m, and C, called the cost, is the penalty parameter
of the error term. The given model summarizes the so-called

20 soft-margin SVM, which tolerates noise within the data. It
does so by generating a separating hyper-plane using the
equation f(x) ¼ f(x) · w + b ¼ 0. Through the representation
of w ¼

P
j f(xj) we obtain f(xi) · w ¼

P
jaif(xj) · f(xi). This

provides an efficient approach to solve SVM without the
25 explicit use of the non-linear transformation (34). Further

K(xi,xj) � f(xi)
T f(xj) is called the kernel function and it is

this function that maps the data to a higher dimension.
Here we use the polynomial kernel, which is of the form:
K(xi,xj) ¼ (gxi

Txj + r)d,g > 0 where g , r and d are kernel para-
30 meters. These parameters are searched to give the best model.

While a fixed value of r (¼0) was used, g , d and the cost (C)
in the soft-margin SVM were optimized based on grid search.
Publicly available LIBSVM was used to build a classifier with
a given kernel and a set of parameters (35).

35 Evaluation methods. First, the dataset was divided into training
set and testing set. The parameters for SVM were found using
cross-validation (CV) over the training set by maximizing the
accuracy. Then, the SVM was validated against the untouched
test set. This procedure was repeated N times.

40 Three methods are used to evaluate the performance. First
is the self-consistency test, also called re-substitution where
training (model building) and testing are done on the same
dataset. Self-consistency demonstrates how well SVM has
turned into internal knowledge. Second evaluation technique

45 adopted is the N-fold CV test. In this method, the whole data-
set is randomly separated into N parts. Each time, one part is
retained for testing and all others form training dataset. This is
repeated until each part forms the testing dataset exactly once.
The parameters giving the best average accuracy are kept to

50 form the classification model. Note that, although the para-
meters are optimized based on the testing set, the decision line
and selection of support vectors are based on the training set.
Thus CV is different from self-consistency. Two implementa-
tions of N-fold CV used here are: 5-fold CV, where the entire

55dataset is divided into 5 parts, and leave-one-out (or jackknife
test) where N equals the total number of proteins in the dataset,
meaning each protein is left out for testing exactly once. Third
method of evaluation is the holdout test. The total dataset is
randomly divided into two halves with approximately equal

60number of positive and negative cases. SVM is then trained on
one of the two sub-sets with CV to find the best parameters
with no regards to the other one. These parameters are then
used on the other subset and the performance is reported. It
should be noted here that the holdout method is different from

652-fold CV of the whole set, where both the datasets are used
for training and testing and the parameters giving the best
‘average’ accuracy are kept. In holdout test, which is mim-
icking a true prediction, only one of the two subsets is used
for searching the optimum parameters, which are then used to

70predict the class of every member of the other subset. However
this evaluation can have a very high variance depending on the
division of the data into training and testing subset. An altern-
ative way to circumvent this is to run the classifier for a
number of times and then analyze the performance on the

75basis of these runs. We iterated this process for 125 times,
each time randomly dividing the data into training and testing
set. Each time the performance was reported. Apart from
accuracy (% of total correct predictions), we also report
sensitivity and specificity, which are fractions of positive

80and negative cases correctly classified, respectively.

RESULTS

We first present various features used in this study and their
propensities in binding and non-binding proteins. Follow-
ing that, we present the model building using SVM with all

85the features included and the performances using various
evaluation methods.

Feature class 1: overall charge

Distribution of overall charge showed significant differences
for binding and non-binding proteins (Figure 1). One can see

90from the figure that 87% of non-binding proteins were neg-
atively charged whereas only 35% of the binding proteins were

Figure 1. Distribution of overall charge for binding and non-binding cases in
Electronic charge units (e). Labels on the x-axis indicate the upper value of the
bin, e.g. 2 indicates the bin 0 to 2.
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negatively charged. Around one-fourth of the binding proteins
had an overall charge greater than 10e as compared to only 1%
of the non-binding ones. In the intermediate positive range,
there were consistently a larger number of binding cases than

5 non-binding ones.
Thus, overall charge can be expected to distinguish the

two cases with certain accuracy. Indeed, with this as the
only feature combined with a linear classifier adopted from
SVM, an accuracy value of 82.4% could be achieved with

10 the jackknife evaluation method (Table 1).

Feature class 2: electrostatic patch

Since DNA is negatively charged, a large positive potential
patch is deemed to be important in driving the protein to the
DNA. The patches are calculated following the procedure

15 described in Materials and Methods. Then the patches are
sorted based on their sizes (number of atoms included in the
patch) and the size of the largest patch is used as a descriptor.

To ascertain the propriety of this feature, we examined the
overlap between our patches and the actual protein–DNA

20 ‘interface’ atoms. A residue was designated as ‘interface’
residue if any heavy atom in that residue is closer than
4.5 s to the DNA and the all its atoms were classified as
‘interface’ atoms. The overlap between interface and each
positive patch was calculated and sorted (Figure 2). We found

25 that in 63% of the DNA-BPs, the largest patch has the biggest

overlap with the DNA-binding interface. For 20% of the pro-
teins, the second largest patch has the largest overlap with the
DNA interface. In only 1% (1 out of 120 proteins), the patch
that had the largest overlay with the interface was not among

30the largest 5 in size. In 4% (5 cases), the DNA-binding inter-
face has no overlap with positive patches.

When the above two features are combined for a linear
classification of binding and non-binding proteins, we anti-
cipate SVM to achieve a higher accuracy. Figure 3 plots

35the overall charge against the size of the largest patch for the
binding (black) and the non-binding proteins (grey). In the
intermediate range of the size of the largest patch, DNA-
binding and non-DNA-BPs show some overlap but the sep-
aration becomes finer towards the higher extreme of the range.

40As expected, addition of size of the largest patch to overall
charge as a feature vector further increases the accuracy values.
With a linear classifier in SVM and these two features, DNA-
BPs could be identified with 83.8% accuracy when evaluated
on jackknife test.

45Feature class 3: amino acid composition

Two kinds of amino acid composition are computed here:
overall and surface (Figure 4). In case of overall composition,
noticeable differences in binding and non-binding cases
were observed with respect to the frequency of Lys and Arg.

50They both are positively charged amino acids so their over-
representation in DNA-BPs is fairly implicit.

As expected, surface composition was more disposed than
overall composition for hydrophobic residues such as Trp,
Phe, Tyr, Cys, Ile and Met. A higher frequency of Arg and

55Lys in binding proteins than non-binding ones was observed.
A lower level of Asp can also be explained since DNA is
negatively charge. Interestingly there is no difference between
the frequencies of Glu. Other amino acids have the similar
composition in both the binding and unbinding cases. From

60these observations one can expect that using composition
alone won’t be as efficient to linearly classify the DNA-BPs.
So, we use them in conjunction with previously discussed
features with non-linear kernel-based SVM.

Prediction of DNA-BPs

65We combined all three classes of feature vectors and used
them to train and test the SVM. For self-consistency, we
could achieve an accuracy value of 100% (Table 1). This

Table 1. Performance of the SVM for different combinations of descriptors, classifiers and evaluation techniques

Descriptor(s) Classifier Validation Accuracy (%) Sensitivity (%) Specificity (%) Parameters
D C g

Overall charge Linear Jackknife 82.4 58.6 95.7 1 11 0.01
Overall charge + patch size Linear Jackknife 83.8 60.3 96.6 1 13 0.02
All Polynomial Self-consistency 100 100 100 2 10 0.309

Jackknife 90.5 81.8 94.9 2 19 0.054
5-fold CV 89.1 82.1 93.9 2 19 0.051
5-fold CV (20%) 90.3 67.4 94.9 2 23 0.034

All Polynomial Leave-half holdout 83.3 82.5 83.5 – – –
Leave 1-pair holdout 86.3 80.6 87.5 – – –
Leave 1-pair holdout (20%) 85.8 81.6 87.8 – – –

Reported in the last column are the parameters giving the corresponding accuracies. Sensitivity and specificity were defined as TP/(TP + FN) and TN/(TN + FP),
respectively, where T ¼ True, F ¼ False, P ¼ Positive and N ¼ Negative.

Figure 2. Overlap of the surface positive potential patches with the DNA-
binding interface. x-axis represents the Nth biggest patch and y-axis exhibits
the % of total binding proteins having the largest overlap with that patch. For
example, 63% of the proteins had the largest overlap with the 1st largest patch.
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implies that SVM could cogently capture the intrinsic correla-
tion between feature vectors and the classification being
sought.

During CV, SVM is tested on how well it can predict on the
5 basis of optimized parameters chosen during training. For both

5-fold CV and jackknife approaches employed, the perform-
ances of the current protocol were almost the same. Using
Jackknife test, by optimizing the parameters with a polynomial
kernel, we could achieve an accuracy value of 90.5% (325

10 correct predictions out of 359 cases) (Table 1). Corresponding
sensitivity and specificity values were 81.8 and 94.9%. Sim-
ilarly for a 5-fold CV technique, average correct predictions
of 89.1% could be made with the optimum parameters with
82.1% sensitivity and 93.9% specificity (Table 1). Comparable

15values of sensitivity and specificity show that the performance
of our protocol is poised.

To make sure that the performance of our protocol is not
biased towards weak homology, we filtered the proteins using
a sequence identity cut-off of 20% i.e. one of the proteins of all

20the pairs having >20% was removed. This assured that a pro-
tein in a test set has no sequence similarity at all to proteins
in the train set. For the two sets we obtained accuracy values
of 90.3%, which are very close to the accuracy value for the
entire dataset (90.5%, Table 1). This shows that the above

25protocol was not biased due to homology recognition.
Finally, the holdout method is used for validation of the

performance of current SVM protocol. The accuracy achieved
in this test corresponds to the ones from true blind predictions.

Figure 4. Frequency of different amino acids in overall and surface composition. The difference in the height of a bar for an amino acid for binding and non-binding
cases reflects a stronger preference for that amino acid in one case over another.

Figure 3. Linear separation of DNA-binding and non-DNA-BPs using only overall charge and size of the largest patch as the features as used by the SVM. Net charge
is in electrostatic charge units.
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We iterated the method, which displayed a high deviation over
125 runs (Figure 5). Training accuracies varied from 79.8% to
92.7%, and testing accuracies ranged between 76.6% and
88.3%, with an average of 83.4%. Training accuracy was a

5 little higher than testing accuracy because when SVM is
being trained, it builds a classification model only on the
basis of the training set, which is not optimized for the testing
set. Overall the two accuracies showed a good correlation.
To directly compare with the previous results (19), we also

10 evaluated our performance for another holdout technique
where a pair of DNA-binding and non-binding protein
(selected randomly) was removed and the remaining dataset
formed the training test. The left pair was then tested upon and
this was repeated 500 times. Evaluated over these 1000

15 (500 · 2) predictions, we achieved an accuracy of 86.3%,
(Table 1) which is higher than previously reported value of
83.9% (19).

Similar to the performance checking in CV, we also per-
formed the leave-pair out hold out for reduced dataset that

20only proteins have <20% sequence identity are included. The
accuracy value is 85.8%, which showed our protocol again
doesn’t depend on sequence homology to perform DNA-BP
prediction. Online server has been provided with the current
protocol on our webpage (http://proteomics.bioengr.uic.edu/

25pro-dna).
One class of non-DNA-BP is RNA-binding protein. Since

RNA-binding protein do share similarities as DNA-BP
(G. Zhao and H. Lu, unpublished data), it is expected our
protocol may not perform as well when the negative cases

30are actually RNA-binding proteins. For this purpose, a list
of 37 RNA-binding proteins was complied from ref. (36)
and the features used above for classification were calculated.
Using the model built from our previous dataset (none of
the RNA-binding protein was included in optimization),

35the classification of RNA-binding protein resulted 21 correct
prediction, and 16 wrong prediction. Thus we decided
to perform a further binary classification model for the
DNA- and RNA-binding proteins, this model resulted in
91.3% accuracy for the binary classification. Thus this post-

40processing can give reasonable accuracy to exclude RNA-
binding proteins from the false positives in the DNA-BP
predictions. It is an ongoing effort to design features specif-
ically to distinguish the DNA-binding from RNA-binding
proteins. The effort will naturally fall into the machine learn-

45ing prediction categories.
We also attempted to identify DNA-BPs whose structure

was solved without the DNA (the unbound cases). We found
seven such proteins where native structures are available in
both bound and unbound states. We structurally aligned the

50two states for each of the 7 cases using publicly available tool
Superpose (37). RMSD values ranged from 0.53 s to 5.11 s

between the corresponding structures. In SVM prediction, we
used the built model where these 7 proteins were not included
in the optimization process. Encouragingly, SVM classified

55correctly all of proteins using unbound structures. This shows
that the above protocol can be used to identify DNA-BPs even
before there is any deformation induced due to the binding of
the DNA, if any.

Figure 6. Orientation of the largest four patches with respect to the DNA. Remaining protein is shown in ’tube’ representation in cyan. DNA is displayed in golden
color with only backbone shown. Patches were mapped on the surface by adapting the PDB files for labeling the atoms in each patch and visualized in VMD (41).

Figure 5. Box and whisker plot for the performance of the SVM for holdout
technique. The performance data was collected over 125 runs.
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Figure 6 shows three examples of different kinds of pre-
diction results from SVM. In Figure 6A, 1 mjo was correctly
classified as DNA-binding. The positive patches are near the
DNA-binding surface. The structure of DNA was not used in

5 the prediction and electrostatic calculation, nor was the
information of binding sites. In this case, not only the protein
is correctly classified, the positive patch can also give indica-
tions about the location of the binding site. Figure 6B
shows another case where the protein (1 cma) was correctly

10 predicted as DNA-binding one. Although, the largest patch is
not so close to DNA, the 2nd and 3rd patches are very close to
binding site. In this particular case, if we further want to push
the idea of binding site prediction, other information in addi-
tion to location of patches would be added, as described

15 in Bhardwaj and Lu (38). Finally there were about 10% of
the cases where we incorrectly predicted the DNA binding
behavior. Figure 6C is one of these cases (1 emh) that was
misclassified as non-binding. In this protein, all the four pos-
itive patches are small and are far from the actual binding site

20 (which we did not know during class prediction). Obviously
this protein does not have features consistent with most of the
other proteins and hence generic rules failed to classify it
correctly. Such diverse behaviors show that more work
needs to be done to add features to describe different DNA-

25 binding mechanisms.

DISCUSSION

We have implemented a kernel-based method (SVM) towards
developing a robust protocol for identification of DNA-BPs.
We have appraised the performance of the SVM using self-

30 consistency, CV and holdout evaluation. We achieved an
accuracy of 90% for CV and 100% for self-consistency.
These values are higher than all previously published studies
where the accuracy ranged from 67% to 86% (15–17,19). We
also report accuracy value of 86.3% for leave 1-pair holdout

35 technique, which is higher than that reported in a previous
study using the same technique (19). Tsuchiya et al. (20),
who used linear separation, reported 86% and 96% accuracy
for DNA-binding and non-DNA-binding cases using self-
consistency. Since SVM uses an entirely different strategy

40 to achieve maximal self-consistency accuracy, there is no
direct comparison between their values and self-consistency
value of 100% reported in this paper.

Similar evaluation of CV and holdout have been applied to
a more difficult (and smaller) test set where all proteins have

45 less than 20% sequence identity. The accuracy achieved there,
90.3% for CV and 85.8% for holdout are comparable with the
main results. These numbers demonstrate our protocol does
not rely on even remote sequence homology for DNA-BP
prediction.

50 We have used an ensemble of features describing DNA-BPs
in order to distinguish them from non-DNA-BPs. Features
used here show a varying distinction power. To judge the
distinction power of a feature, we calculated Fisher’s score
(FS) for every feature, j as: FSj ¼ ðm1�m2Þ

2=s2
1 þ s2

2 where mi

55 and si are the mean and standard deviation of the feature in
class i, respectively. Higher the FS, the more discriminative
power this feature has. The top ten features with highest FS
were: overall and surface fraction of Arg, overall charge,

overall fraction of Gly, Asp, Lys, size of the largest patch,
60and the surface fraction of Asp, Lys and Gly. The greater

discriminatory power of these features is also reflected in
their contrasting distribution in the corresponding positive
and negative cases. While it is expected the positive charged
residues Arg, Lys and overall charge contribute to the good

65performance, there are some very interesting observations
such as percentage of Gly plays important role in discri-
minating DNA-BPs. We have seen that there is less Gly in
DNA-BP than in non-binding ones. This data may suggest that
DNA-BPs in general are more rigid than non-binding ones.

70Similarly, the top ten features showing highest power to
distinguish DNA-BPs from RNA-binding ones were: overall
fraction of His, largest patch size, overall charge, overall
fraction of Trp, surface composition of Asp, Ile, His and
Cys and overall fraction of Asp and Val. In this discrimination,

75we noticed besides the electrostatic properties, the percentage
of His and Trp played important roles. Note, while Fisher’s
score indicates the predictive power of an individual feature,
it is important to remember that the relationships between
features that ultimately determine classification. Extracting

80and interpreting such information from an SVM model is
still and open research issue.

As shown in the Results, these features when combined
together can predict DNA-BPs from non-DNA-binding ones
more accurately than when they are used separately. Apart

85from establishing the fact there is an inherent correlation
between these features, this observation also authenticates
the application of kernel-based machine learning methods
to take advantage of this correlation.

The current implementation uses three classes of features
90and the results are highly encouraging. It is natural to assume

with the inclusion of more features the performance will
increase. A new class of features under development is the
geometry of the protein surfaces. Encouragingly, it is easy
to include new features in the framework of SVM. Further,

95when more features available, feature selection can be used to
ascertain the features that are contributing more to the overall
accuracy and the ones that are just adding noise.

Besides annexation of more features, a potential channel for
furthering the prediction power of the SVM would be through

100development of models specific to a class, a family or even
motifs (39). To begin with, trends specific to some structural
motifs that play a key role in binding to the DNA, such as
helix–turn–helix or helix–loop–helix, could be included (40).
Also, deciphering the reasons why some particular sites on the

105surface bind to the DNA and others do not will go a long way
in improving our understanding of the determinants of DNA-
binding. For misclassified proteins, it would be tempting to
uncover the driving forces and agents behind both mobiliza-
tion of such erratic proteins to the DNA and, selection of the

110binding sites.
The development of the above protocol is purported to

augment contemporary function annotation tools. Since this
protocol does not rely on any sequential or structural analogy,
it is capable of identifying DNA-BPs even when they are

115embedded in novel motifs or folds. In the future course of
exploration in related fields we contemplate a multitude
of kernel-based machine-learning tools to be employed for
the purpose of DNA-BPs identification. The method can
apparently be polished by addition of more features and apt

6492 Nucleic Acids Research, 2005, Vol. 33, No. 20



fine-tuning of the SVM once the circumstances of protein–
DNA-binding are better comprehended.
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